Blind Source Separation for Convolutive Mixtures with Neural Networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutive Blind Source Separation for Noisy Mixtures

The problem of separating convolutive mixtures of unknown time series arises in several application domains, a prominent example being the so-called cocktail party problem, where we want to recover the speech signals of multiple speakers who are simultaneously talking in a room. The room may be reverberant due to reflections on the walls, i.e., the original source signals sq(n), q = 1, . . . , ...

متن کامل

Blind source separation for convolutive mixtures

This paper introduces the blind source separation (BSS) of convolutive mixtures of acoustic signals, especially speech. A statistical and computational technique, called independent component analysis (ICA), is examined. By achieving nonlinear decorrelation, nonstationary decorrelation, or time-delayed decorrelation, we can find source signals only from observed mixed signals. Particular attent...

متن کامل

Blind Source Separation Algorithm for Mimo Convolutive Mixtures

We consider the problem of blind source separation of MIMO convolutive mixtures for the general case where the number of sensors are greater than or equal to the number of sources. We assume that sources are non-stationary signals. The separation is performed in the frequency domain by joint minimization of the off–diagonal elements of observed signal’s cross-spectral density matrices over diff...

متن کامل

Blind Source Separation for Convolutive Mixtures Based on Complexity Minimization

ABSTRACT Using algorithmic complexity to perform blind source separation (BSS) was first proposed by Pajunen. This approach presents the advantage of taking the whole signal structure into account to achieve separation, whereas standard ICA-based methods only use either time-correlations or higher order statistics in order to do so. Another advantage of this approach is that no assumptions abou...

متن کامل

Blind Source Separation for Convolutive Mixtures: a Unified Treatment

Blind source separation (BSS) algorithms for time series can exploit three properties of the source signals: nonwhiteness, nonstationarity, and nongaussianity. While methods utilizing the first two properties are usually based on second-order statistics (SOS), higher-order statistics (HOS) must be considered to exploit nongaussianity. In this chapter, we consider all three properties simultaneo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Electrical and Computer Engineering

سال: 2011

ISSN: 1582-7445,1844-7600

DOI: 10.4316/aece.2011.01010